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ABSTRACT

The asymptotic rates of convergence for approximate solutions of
linearizations of the stationary Navier-Stokes equations are computa-
tionally determined for some specific choices of confbrming finite ele-
ment spaces. These rates ;re computed for norms of physical interest
and are compared to available theoretical estimates. It is shown that
equivalent rates of convergence are achieved by alogrithms which differ
greatly in their computer storage and time requirements. The solution
of the discrete system of equations resulting from the finite element

discretization is also discussed.
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1. Introduction

We consider the approximate solution of linearizations of the
Navier~Stokes equations of viscous incompressible flow. In particular we
are concerned with conforming mixed finite element methods. We make no
attempt here to solve the full nonlinear Navier-Stokes equatiomns, but
certainly the results and algorithms discussed below have considerable
relevance to that case. For instance, many iterative algorithms for the
approximate solution of the nonlinear Navier-Stokes equations require, for
each iteration, the approximate solution of a linear problem of the type
we consider here.

Our first goal is to examine the rates of convergence of some partic-
ular finite element approximations. These rates will be determined for
norms of physical interest. These are the Lz—norms for the pressure and
the EZ and ﬁi—norms for the velocity field. The latter are of interest
in the calculation of flow fields and of shear stresses, respectively. We
will examine the optimality of these rates, i. e., how the rate of conver-
gence of the finite element approximation of smooth solutions, measured in
a given norm, compares with the rate of convergence of the best approxima-
tion out of the finite element space considered. We will also be cognizant
of the work and storage requirements of computer implementations of the
particular finite element algorithms. Thus, having examined the rates of
convergence and the computing requirements of the various algorithms, we
will, at least in an asymptotic sense, be able to draw conclusions about
their relative efficiency.

Finite element discretizations of our linear partial differential

equations leave us with a linear system of algebraic equations to solve.

A second goal of this work is to discuss the efficient implementation of



a Gauss elimination algorithm for the solution of these systems. We pay
particular attention to the enforcement of the orthogonalities, both
physical and nonphysical, which the discrete pressure must satisfy.

There exists an ever growing literature concerned with finite element
methods for the approximate solution of both the Stokes and Navier-Stokes
equations. Much of the mathematical literature is included in {1,2]. 1In
addition, of course, there is a large body of engineering literature which
is mainly directed at assessing the effectiveness of algorithms on the
basis of some empirical criterion such as visual presentation of flow
fields or comparison with experiments. Seldom are the asymptotic rates
of convergence examined. The determination of these rates for smooth
solutions of linearizations of the Navier-Stokes equations is, as described
above, a goal of this work.

Section 2 contains a description of the class of problems we consider
as well as a brief presentation of the analyses of error estimates. In
Section 3 we introduce some particular choices of finite elements which we
will use to generate the numerical results of Section 5. In Section 4, we
discuss the solution of the linear systems of algebraic equations resulting

from the discretization process.

2. Error Estimates

The stationary Navier-Stokes equations for the steady flow of a viscous
incompressible fluid are given by
in Q

- %Z div grad u + (u-* grad)u + grad p (2.1)

[]
)

divu=0 in € (2.2)

we

u=0 on o0, (2.3)

-



where u 1is the fluid velocity, p the pressure, Re the constant Reynolds
number, and f a prescribed forcing function. § is a domain in ]R2 or

R3 in which the velocity and pressure are sought and 0f is the boundary
of { which is assumed to be sufficiently smooth for the regularity results
quoted below to hold. The variables appearing in (2.1) - (2.3) have been
suitably nondimensionalized.

We wish to consider, for x € , flow fields which are "small" perturba-

tions of a given flow field U(x). The perturbations, which we also denote

by u and p, satisfy linearizations of (2.1) - (2.3) about the given flow

field U. Assuming that

divU=0 in & and

=
"

0 on 9F, (2.4)

we then have the linearized Navier-Stokes equations

(2.5)

]
jrh
=

=]
D

- ﬁl'é' divgradu + (U grad)u + (u- grad)U + grad p

divu=0 in Q ; (2.6)

u=0 on 3N . (2.7)
If U= 0, then (2.5) - (2.7) reduce to the stationary Stokes equations
while if U = constant, we are left with the Oseen equatiomns [3].

The variational form of the problem (2.5) - (2.7) which we will employ
is the following Galerkin formulation. We seek u € Hé(Q) and P E 1-2 ()

such that

ay(@,¥) + b(p,v) = <£,v> Vv € B (@) ; (2.8)



b(qou) = 0 Vqe L), (2.9)
where

aU(B’.Y) =/[é gradu: gradv +U* gradu *v + u* gradU- X]dﬂ , (2.10)

Q
b(q,u) =/qdivE dQ, (2.11)
Q
<f,v> = [f-v dQ. (2.12)
Q

Here, ﬁg(ﬂ) denotes the Hilbert space of real 2 or 3-dimensional vector
fields whose components have distributional derivatives up to order one in
LZ(Q) in each variable and which have zero trace on 3fl. EQ(Q) denotes the
linear subspace of LZ(Q) consisting of square integrable functions with
zero mean over §l. It is necessary to introduce some such normalization

for the pressure since clearly (2.5) - (2.7) can determine the pressure only
up to an additive constant. In (2.10) the colon denotes the scalar product

of the two tensors standing on either side. We note that ﬁ%(Q) is normed by

I 1”:])'_ = /gradi: grad v dQ. (2.13)
Q

P~ '
For f€H 1(9), the dual space of Hé(ﬂ), the form <£,v> 1is a bounded
linear functional on ﬁ%(ﬂ).
We note that for the Stokes equations, the bilinear form (2.10) reduces

to

aO(E’X) = Elé' /gradg: grad v d{,
1Y)




which is coercive on ﬁé(g) in the sense that
2 =1
ag(u,w > ¢l ufl§ v u € H (@),

The corresponding form for the nonlinear Navier-Stokes equations is the

trilinear form
A(w,u,v) = ag(u,v) + /_q gradu*v dQ,
9]

which is also coercive in the sense that if w 1is divergence free in {

and vanishes on 9§}, then

2 =1
A(w,u,u) = 30(2’2) > C“_g_ “1 Vw, u¢€ HO(Q).
The bilinear form aU(',°)_ is not coercive in this sense. In fact

aU(u,u) = ao(u,u) + /3- grad U- u df.
Q

However, it can be shown by the same techniques used in [4] for non-selfad-

joint second order elliptic partial differential equations that

inf sup Jay(u,w)| > cfull; , (2.14)
>1
ve # |yl =1
and
inf sup |ap(u,v)| > C”_\_I_“l . (2.15)

1
ved Jul,=1




Otherwise, the bilinear forms aU(',' and b(*,*) satisfy the same con-
tinuity and stability conditions satisfied by the corresponding forms for

the stationary Stokes equations. Together with (2.14) and (2.15), this

enables us to apply the theory of [5] to our problem. Thus existence and
uniqueness of the solution E_eiﬁ%(ﬂ) and »p C'EZ(Q) is guaranteed. Further-
more, for a sufficiently smooth boundary 92 it can be shown [6] that in

fact

lull, + Mell; = cll£ll,- (2.16)

The finite element scheme we use is the standard one. We choose sub-

spaces Vh € ﬁ%(ﬂ) and Sh S'EQ(Q) and then define the approximation EP
h he Sh

and ph to be solutions of the problem: seek u € Vh and p such
that
aU(gh,zh) + b(ph,zh) = <_,zh> v xhi VR, (2.17)
b(g"u™ = 0 v e sh, (2.18)

The existence and uniqueness of the approximations EP and ph follow when
the forms aU(',') and b(*,*) satify certain continuity and stability con-
ditions on the discrete spaces. Since this analysis closely parallels that
for the stationary Stokes equations [7], we omit it here.

The analysis of the error between the solution of (2.8), (2.9) and
(2.17), (2.18) is also given in [7] with generalizations given in [5]. These
analyses are based on the application of the BabuS$ka theory to the variational

problem: seek (u,p) € ﬁ% X fz such that

-




B[(HsP);(XaQ)] = <£3_Y> v (_Y,CI) € HO x L,
where
B[(u,p), (v,a)] = a;(u,v) + b(p,¥) + blq,u)-
This variational formulation over the product space 'ﬁb X EQ is obtained

from the formulation (2.8), (2.9) in the obvious manner. The resulting

error estimate is obtained in the graph norm

ol = lxli; + Hally,
and is given by
Il - o™ p-pMlll < ¢ 1nf Il w-8"p-MII, (2.19)
~h by o b oh

where the infimum is taken over all @ ,p ) € V' x S, The estimate (2.19)

immediately yields that

< ¢y taf Ju-8"ll, + e [o-8"lgp (2.20)
~ [ yh b n_ e 0
i € V p €38
. s h
with a similar estimate for ||p-—p ”0.
More precise estimates can be deduced as a direct application of the
theory given in [8]. Before presenting these estimates, we need to introduce

the subspaces ZC Hé(Q) and P c B defined by

Z={zeH (| bla,2) =0 Vqel @}



and

h

7 - {ghi yh b(qh,_h) =0V q € shy,

-
Roughly speaking, Z 1is the subspace of Hé(Q) consisting of solenoidal
fields and 1P is the subspace of yh consisting of "discretely solenoi-
dal" fields. It is important to note that in general, Zh¢ Z. We also

define
T(Z,Zh) Z sup inf|| E'Eh”]_ R

where the infimum is taken over all z € Z and the supremum is taken over

all Eh € Zh with || _z_h

I, =1. 1f 72%c 7 then clearly TI'(Z,Z%) =o0. In
general, T(Z,Zh) is a measure of the angle between the linear manifolds

Z and Zh and clearly, from its definition, 0 < F(Z,Zh) < 1. Then,

applying the analysis of [8], we are led to the error estimates

h N - A
lu-d"ly <oy anf Nu-8l; +cr@2h ame fe-8"ly,  @.2D)
ghG Vh ﬁhG Sh
and
h A . A
Ip-2"ll, <c] inf [u-8"ll, +cy dnf [[p-5"],- (2.22)
ﬁh e yh i) esh

The estimate (2.22) is essentially the same as the corresponding estimate
obtained from the graph norm estimate (2.19). The estimate (2.21), when
compared to (2.20) contains new information in the mulitplier I‘(Z,Zh). For
example, if Zl'1 C Z, then (2.21) reduces to

. ~h
<¢C hlté-f h|| u-14 ”1 , (2.23)

v




i. e., the error in the velocity field uncouples from that of the pressure

field. We believe, although it has not been proven, that the estimates

(2.21), (2.22) are sharp, even when F(Z,Zh) % 0. For these reasons we

will regard (2.21), (2.22) to be our estimate for the velocity error in the

ﬁ%(ﬂ) norm and the pressure error in the fQ(Q) norm.

Provided u is sufficiently smooth, the standard duality argument may

-
be applied to obtain an estimate for the velocity error in the LZ(Q) norm

wily o v-s ]t en

Q

The result is, as expected [2], that
h h h
Nu-dly = clllu-s®lly+ Ho-2"lly)

1

. . . h
sup inf || v, - vy + tnf || g -q"ll,

g2 el Vet e st

where (Xg’qg) is the solution of the adjoint problem

* + < > x 9]
ay(@,v,) + b(u,q,) = <g,u> V¥ u €H (D),

vVpeIi@ ,

|
o

b(Xg,P) =

and where

*
(u,v)= a,(u,v) + [usgrad U*v -U- grad v- u] 4Q.
ay oww + Jlu LA 4 vou

(2.24)

(2.25)

(2.26)
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The existence and uniqueness of the solutions of the adjoint problem (2.25),
(2.26) follows from the conditions on the forms aU(',') and b(*,*) which
guarantee the existence and uniqueness of the solution of the problem (2.8),

(2.9). Furthermore, for 09 smooth enough, the solution (Xg,qg) also

satisfies a regularity estimate of the type (2.13), i.e., we have that

le I, + lagll, < cllgl,

3. Finite Element Pairs

The problem (2.8), (2.9) is not positive definite and therefore discrete
approximation procedures tend to be unstable. Therefore, some care must be
exercised in the choice of the approximating spaces Vh and Sh. There are
several conditions that must hold for the stability of the approximations to
be guaranteed; these may be found, e.g. in [5] or [8]. The particular form
of these conditions which we will use is now introduced. Let wh denote

the orthogonal complement of Zh in Vh with respect to the inner product

Vu:V .
1;22 v df

Then

T L O W (3.1)

Further, let the operator div, : Vh-*Sh be defined by the relation

b = [t " v e sh, (3.2)
Q
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where b(*,*) 1is defined by (2.11). The conditions necessary for the
existence of the decomposition (3.1) and the operator divh will always
hold for the problem set up in the form (2.17), (2.18). Details can be
found in, e.g. [5] and [8]. The necessary stability condition is the

following: there exists a positive constant <Y independent of h

(which for our purposes is a measure of the grid size) such that
h h h h
: € ) .
| div,w' [y 2 vllwll;, Vwuew (3.3)

For given subspaces Sh and Vh, it is not in general easy to prove that
(3.3) holds. Clearly, since the form b(+,*) is identical to the corres-
ponding form for the stationary Stokes equations, the stability criterion
(3.3) is the same as that necessary for that simpler case. For the element
pairs considered below, the condition (3.3) has been shown to hold [9].

It is easy to show that (3.3) does not hold in general. To see this,
take § to be a square. We subdivide the squafe into subsquares and then
into triangles as shown in Figure 1. We choose Vh to be the space of
vector valued functions with components which are continuous piecewise linear
polynomials defined on the triangles which also vanish on the boundary Q.
For Sh, we choose all piecewise constant functions on the triangles with
zero mean over the square. From (3.2) it is simple to show that

h

div Xh= div v Vv € VR,

On the other hand, by inspection of Figure 1 and the use of the boundary

condition ' =0 on 90 shows that div v = 0 implies that v = O.

Vh

But then Zh = 0 so that wh = and therefore (3.3) must hold for all
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lf‘e lﬂh But clearly we may choose Xb such that || Xﬁ”]_ =1 and XP
is a best ﬁ%(ﬂ) approximation to a solenoidal field. Then

> 0 as h -+ 0,

| div y_h

n¥ o

so that (3.3) cannot hold.

In choosing Vh and Sh, a triangulation of § must be established for
VB and another one for Sh. There is no a priori reason for these two tri-
angulations to be coincident, although in the literature this is often the
case. Some of the element discussed below use different, although related,
trianglulations for yh and Sh.

Once triangulations for Vh and Sh are chosen, some discussion must be
made about the degrees of the element polynomials in each case. The estimate
(2.21) indicates that if the mesh sizes of Vh and Sh are comparable, then
since 0 < T(Z,Zh) < 1, it is desirable to choose the degrees of the element
polynomials so that the two terms on the right hand side of (2.21) are of the
same order in h. We refer to this condition on the degrees of the element
polynomials as the '"comparability condition" between the spaces B ana SP.
We shall see below that this condition is not necessary for the ﬁ%(ﬂ) conver-
gence of the velocity approximations. On the other hand, some of computational
results of section 5 indicate that the comparability condition is probably
necessary for optimal ﬁg(Q) convergence. It is assumed, of course, that
the chosen elements form a stable combination in the sense of (3.3).

Below we describe four finite element pairs. In each case we define
a space Vh of discrete velocities and a space §h of discrete pressures.

The spaces §h so defined are not subspaces of i?(Q) and must therefore

be constrained to satisfy the zero mean condition. In some instances, the




spaces §h must be further contrained in order for the stability condition
(3.3) to be satisfied. 1In 1R2 this additional constraint takes the form
of a single orthogonality condition which the discrete pressure must satisfy.
The subspace of gh obtained by imposing the above constraints on the space
§h of discrete pressures. Details about the nature and implementation of
such constraints are given below in section 4.

A stable scheme, apparently first suggested in [7]) is obtained by sub-
dividing ! dinto triangles and then choosing §h to be all piecewise con-
stant functions over the triangles and Vh to be all continuous piecewise
quadratic vector fields over the triangles which vanish on the boundary 3f.
The approximations found using these subspaces are optimal in the graph norm
estimate (2.19) [2] but, as the computations reported below indicate, the
approximation to the velocity field is not optimal in the ‘ﬁg(ﬂ) norm.

We note that the comparability condition is not satisfied by this quadratic
constant element pair. Furthermore, it is clear that divh + div, i.e.,

Zh ¢ Z, since the divergence of elements in v will in general be piece-
wise linear functions while divh zb, being by definition an element of Sh,
is a piecewise constant function.

A second stable scheme is defined as follows. First, subdivide
into quadrilaterals and choose gh to be all piecewise constant functions
over the quadrilaterals. We then subdivide each quadrilateral into triangles
by drawing a diagonal and choose Vh to be all continuous piecewise linear
vector fields over the triangles which vanish on the boundary 9{i. Here we
are using distinct, although closely related, triangulations in defining Vh
and 3%, Furthermore, once again it is clear that div, $ div, i.e.,

Zh ¢:Z. On the other hand, the comparability condition is satisfied. Compu-

js. 9
tational results displaying optimal Hé(Q) accuracy in the velocity approxi-

mations are reported below.
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The third scheme we study has the distinguishing feature that
divh = div v so that Z}lC Z and F(Z,Zh) = 0. Also this scheme is stable
and satisfies the comparability condition. To define this scheme, we again
subdivide @ into quadrilaterals and subsequently divide each quadrilateral
into four triangles by drawing both diagonals. Then Vh is chosen to be
all continuous linear vector fields over the triangles which vanish on the
boundary 92 and §h is chosen to be gh = div Vh. gh is a subspace of
the space of all piecewise constant functions defined over the triangles.
Referring to Figure 2, a convenient basis for §h is defined within a quadri-
lateral ABCD by the three functions which are constants on the triangles
ABD, ABC and BCD and zero elsewhere. The basis set is three dimensional
within each quadrilateral, instead of being four dimensional, because the
divergence theorem forces a constraint within each quadrilateral. It can be
shown that gh possesses essentially the same approximation property as that
for the space of all piecewise constant functions over the triangles. More
details concerning this element pair may be found in [10].

The fourth and final scheme, unlike the three previous ones, is restric-
ted to regions whose boundaries are straight lines parallel to the coordinate
axes. We subdivide such a region into rectangles and choose §h to be all
piecewise constant functions over the rectangles and Vh to be all continuous
piecewise bilinear vector fields over the rectangles which vanish on the
boundary 3f2. Clearly, for this element pair, divh + div but the comparabi-

—
lity condition holds and we can expect optimal Hé(Q) accuracy for the

velocity approximatiomns.
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4. Direct Solution of Discrete Equations

The discrete linear system of equations resulting from using the above
finite element pairs Vh, §h in (2.17), (2.18) 1is indefinite, and due to
the convection terms depending on U, is non-symmetric. If the unknowns
are numbered sequentially according to nodes, the coefficient matrix is al-
s0 banded. Due to the indefiniteness of the system, a partial pivoting
strategy must be used.

For all the element pairs introduced in section 3, the computed pressure
should be normalized so that it has zero mean. Except for the quadratic-
constant element pair, there may be an additional orthogonality condition
which the discrete pressure must satisfy. To see how the need for such a
condition arises, let us consider the second element pair introduced in
section 3. It is easy to verify that for a rectangular uniform grid, the

discrete pressure gradient at the point P (see Figure 3) is given by the

vector

[(p,+p,) - (p;+p,)]/24x
( PRI 17 P3 ) D)

[(P1+P2) = (P3+ Pa)]/sz

where Py refers to the constant discrete pressure in the box labled 1.
Clearly this discrete gradient vanishes not only for the constant function
Py =Py, = P3 =P, but also for the piecewise constant function P, = “Py, =
= Pg = Py The latter function is in the null space of the discrete gra-
dient due to the averaging process which precedes the differencing process
in (4.1). In triangulations which can be obtained from a regular triangula-
tion by piecewise linear mappings the quadrilaterals which subdivide § can
be labeled red and black in a checkerboard pattern. Then the discrete gra-

dient operator will have a two dimensional null space consisting of the
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constant function and a function analogous to the osciallating function
described above for the grid of Figure 3. Indeed, if § is a rectangle
and the triangulation is uniform, this function is equal to one on the
black boxes and minus one on the red boxes. This phenomena also occurs
for the third and fourth element pairs of section 3. It is important to
note that in general it is not necessary to know a priori the number of
elements in the null space of the gradient or their exact nature. The
correct normalization of the discrete pressure may be accomplished without
such information, e.g. by the process described in the next three para-
graphs.

It was found convenient not to impose any normalization or orthogonality
conditions on the approximating space §h for the pressure but instead to
impose these conditions on the discrete pressure by a post-processing pro-
cedure. Then, during the elimination process, zero pivot elements are en-
countered. The number of such elements is equal to the dimension of the
null space of the discrete gradient operator, i.e. one for the quadratic-
constant element pair and perhaps two for the other three element pairs. In
the actual computations, these pivot elements are detected whenever a pivot
is encountered whose magnitude is smaller than a prescribed tolerance which
should depend on the machine precision. When a zero pivot is encountered,
that step of the elimination process may be skipped since the corresponding
column to be eliminated is already in reduced form. Then, during the
backsolve, the components of the solution vector corresponding to the zero

pivots may be arbitrarily prescribed, i.e., they may be set to unity.

Of course, the discrete pressure found by this process will not satis-
fy any of the normalization or orthogonality conditions. However, these

may now be imposed on the solution of the discrete equations by a simple




post-processing procedure which renders the discrete pressure orthogonal

to the null space of the discrete gradient. We note that the discrete veloc-
ity field computed by the elimination procedure described above is correct
and thus needs no further processing. To describe the post-processing
procedure for the discrete pressure, let us denote by ‘ﬁ; the vector whose
components P! are the discrete pressure in the j-th pressure element
(triangles for the quadratic-constant element pair, quadrilaterals for

the second ;lement introduced in section 3, etc). Then 3“ is an element

of R’ where J is the number of pressure elements. Now let {gh},
k=1,...,K denote an orthogonal basis for the null space of the discrete
gradient operator, where K = 1 for the quadratic-constant element pair

and K may be 2 for the other three element pairs. (Incidentally, the dis-
crete gradient operator, being a linear operator between the finite dimen-

ah

sional spaces S and Vh, may be expressed as a matrix. Indeed, the dis-

crete divergence operator divh has the matrix representation D whose

elements are given by

Do = b(qp v ),
where {qm} and {Xn} are basis sets for Sh and Vh, respectively. Then
the discrete gradient operator may be represented by DT.) We then define

-

P e R’ by

K - ]
? = (I- Z _SES_S_k)_T)Fv .
=1 @Tgk

. . . h s .
Then the piecewise constant function p whose value in the j-th pressure

= 3
element is given by the j-th component of P, i.e. Pj’ is the post-processed
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discrete pressure which we seek, i.e. ph will satisfy all the required
orthogonality and normalization conditions.

For some simple geometries and triangulations, it is possible to deter-
mine the vectors {gk} by inspection. 1In the general case, they may be
determined, with negligible additional cost, as follows. When we perform
the backsolve step in the elimination procedure, we do it with either one
or two additional right hand sides, depending on the particular element
pair being used. These additional right hand sides have all components
equal to zero. When the first zero pivot element is reached during the
backsolve, the corresponding element in the solution vector corresponding
to the first additional right hand side is set equal to unity, while for
the second right hand side, if it is necessary, it is set equal to zero.
If a second zero pivot element is reached, the above assignments of the
corresponding components in the solution vectors are reversed. At the end
of the elimination procedure, the solution vectors corresponding to the
additional right hand sides will contain, in their components which are
discrete pressures, a basis for the null space of the discrete gradient
operator. The (gk} found this way will in general not be orthogonal;
of course and orthogonal basis is found, again at negligible cost, by re-

=2
nlacing S~ by

(gi)Tgi

- ""lT N
(1- §_<§__>_)52 ,
The storage and computing time required by the four schemes described
in section 3 differ sharply. As an example, let  be a rectangle sub-
divided into an NxN grid, i. e. N boxes in both the x and ¥y

direction. Then the grid size h 1is proportional to 1/N. 1In Table 1




we tabulate the number of unknowns and half-bandwidth of the coefficient
matrices resulting from each scheme. The tabulated expressions are valid
for large N, i.e. we only give the leading term in N. We also give

the storage and computing time requirements for each element pair relative

to those for the quadratic-constant element pair.

TABLE 1

Storage and Computing Time Requirements

Element Number of Half- Relative Relative
Pair Unknowns bandwidth Storage Computing Time
Qc 1082 10N 1 1

LC2 3N2 3N .09 .027

LC4 7N N .49 343

BC 3N2 3N .09 .027

In the table, QC refers to the quadratic constant element pair, LC2 and

LC4 to the linear-constant element pairs with two and four triangles per
quadrilateral, respectively, and BC to the bilinear-constant element pair.
Clearly the element pairs LC2 and BC require significantly less storage

and computing time. This is significant since, as we shall see in the next

section, all four element pairs achieve the same rates of convergence.

5. Computational Results

In order to compute the asymptotic error behavior as a function of the

grid size h, (2.5) - (2.7) was solved in the region

Q= {x,yl0<x,y< 1},
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for a problem whose exact solution is

le
I

(sin X sin 2ﬂy>

xz(l-x)sin Ty

(1- 4y+—y3)cos mX.

o)
]

For this choice of u and p (2.7) is satisfied, but (2.6) is actually
inhomogeneous, i.e. (2.6) is replaced by div u =F where F 1is a smooth
function + 0. Generally in incompressible flows F = 0 but the fact that
here it is nonzero does not affect the validity of the results below when
F = 0. This is because for smooth solutions the rates of convergence in
the estimates (2.21), (2.22) and (2.24) are independent of f and F. For
instance, in (2.21), using linear velocity and constant pressure elements

we obtain

lu-u™l, <cndllull, +lell),

and only the multiplier of h depends on f and F. Indeed, for F # 0,

the regularity estimate (2.16) is replaced by

lull, +lell, < cdiglly+ 1l -

We will use the notation of Table 1 in labeling the element pairs.
In all cases the triangulation of { used was a uniform one based on
subdividing  1into smaller squares of side h and, when called for,
further subdividing these squares into triangles. Although the problems
and regions considered here are rather simple, they suffice to determine

the asymptotic rates of convergence of the approximations.




Two different choices for the convection velocity U were employed,

(%> <4(y-y2)>
U= and U = .
3 0

For the first choice the problem (2.5) - (2.7) describes an Oseen flow

namely

while for the second choice we have a linearization about a parallel flow
with a parabolic velocity profile.

Instead of computing the error Ej-gh, we actually computed

u? - g?, where QP =TLu and T, is the pointwise interpolation operator

from u > §P€ Vh. Then the norms

~h_ h
[ and || 5" -u

o b (5‘1)
were computed. The reason for comparing with the interpolate is that the
norms (5.1) may be easily computed exactly (except, of course, for roundoff
errors). Then, by the triangle inequality,

h

-h _h
) lu-3"ll, + |3 -u"ll, (5.2)

| u-u

| A

*

where | ”* denotes either of the norms in (5.1). The first term on
the right of (5.2) is purely approximation theoretical and can be easily
estimated for smooth solutions. The second term on the right will be
estimated by the computations reported below.

The errors in the pressure were also computed relative to an inter-

polant. TFor the element pair QC this interpolant was the Sh - inter-

polant with the interpolation points being the centroids of the triangles.
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For LC2 and BC element pairs the Sh - interpolant was again used
with the interpolation points being the centroids of quadrilaterals. For
the LC4 grid, we used the interpolant on the space of all piecewise
constant functions over the quadrilaterals, with the interpolation points
being the centroids of quadrilaterals. Furthermore, for the LC4 grid

b ,ver each quadrilateral.

we replace ph by the average value of »p
The rates of convergence were calculated by assuming that the errors

in every case have the form Chu and then computing o between each pair

of successive grids by the formula
o = Rn(ég) /lﬁn(;g)
1 1 ’
where €4 denotes any of the errors.

Tables 2-5 contain the computed convergence rates for the EQ(Q) error
in the pressure approximation and the i?(ﬂ) and <ﬁé(9) errors in the
velocity approximation for each of the four element pairs. A sequence of
grids ranging from h = 1/7 to h = 1/14 were used to generate the entries
in the table.

For the element pairs LC2, LC4 and BC, the rates given in the tables
are at least as great as the correponding rates for the approximation error.
Therefore, by (5.2) the rate of convergence will be no worse than that given

by the approximation theoretic part, i.e., convergence is optimal. In

these three cases,

h _ .
lp-p'll, = om)
lu-u"ll; = o (5.3)
lu-u™l, = o).

0




On the other hand, the rates given in Table 2 show that in (5.2) the velocity
errrors are dominated by the second term on the right hand side. The 'ﬁé

and fz approximation errors are O(h2) and 0(h3), respectively, while by
Table 2 the corresponding second terms in (5.2) are O0(h) and O(hz), respec-

h

tively. Strictly speaking this does not imply that |[u-u is not O(hz)

I,
and llza-sflﬂo + O(h3); however, direct computation of these errors, based
on the use of high order quadrature formulas, show that these errors are in-
deed at best O0(h) and O(hz), respectively, i.e. the rates are sub-optimal.
In fact, the estimates (5.3) hold for the element pair QC, in spite of the
fact that it is considerably more complex to compute with than the other ele-
ment pairs (see Table 1).

If we allow the Reynolds number to become very small, then (2.5) begins
to look more and more like a Poisson equation for the components of u. Not
surprisingly, this improves the rates of convergence of the velocity approxi-
mation for the element pair QC relative to the rates given in Table 2, i.e.
they approach the optimal rates. O0f course, the rate for the other element
pairs are unaffected since they were already optimal.

We note that in some instances the rates measured relative to the interpo-

lant are one order higher than the corresponding rates for the approximation

error. This happens for all the pressure errors and for the ﬁ% velocity
errors for the element pairs LC2 and BC. This form of "superconvergence"
is potentially useful, for example when linear functionals of the true solu-
tion are to be approximated.

Finally we note that the estimates given in (5.3) are everywhere in

agreement with corresponding theoretical estimates (2.21), (2.22) and (2.24).

Therefore, it seems that the latter are indeed sharp.
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Figure 1. A grid not satisfying the stability criterion (3.3).

A B

Figure 2. Triangulation of a quadrilateral for the LC4 element pair.

Figure 3. Discrete pressure elements for the LC2 element pair.



